Minsk, Belarus
Russian Federation
Russian Federation
from 01.01.2020 to 01.01.2024
Russian Federation
VAC 5.8.4 Физическая культура и профессиональная физическая подготовка
VAC 5.8.5 Теория и методика спорта
VAC 5.8.6 Оздоровительная и адаптивная физическая культура
VAC 2.2.12 Приборы, системы и изделия медицинского назначения
UDK 796.011.3 Методика физического воспитания. Пути и средства физического воспитания. Учебные заведения физической культуры
GRNTI 77.00 ФИЗИЧЕСКАЯ КУЛЬТУРА И СПОРТ
GRNTI 20.00 ИНФОРМАТИКА
OKSO 09.00.00 Информатика и вычислительная техника
OKSO 44.00.00 Образование и педагогические науки
BBK 3 ТЕХНИКА. ТЕХНИЧЕСКИЕ НАУКИ
BBK 75 Физическая культура и спорт
TBK 5 ПРИКЛАДНЫЕ НАУКИ. ТЕХНИКА. МЕДИЦИНА
TBK 2352 Спорт
BISAC COM023000 Educational Software
BISAC COM074000 Hardware / Mobile Devices
BISAC COM032000 Information Technology
BISAC TEC059000 Biomedical
The article presents innovative solutions in the field of information and measurement systems implemented in the scientific and educational cluster of the Belarusian State University of Physical Culture "Intelligent technologies in Sports". The main attention is paid to the demonstration of wireless strain-measuring devices for monitoring biomechanical parameters of movements during the interaction of athletes with equipment in rowing and skiing sports, as well as with the support surface of a special simulator when simulating the technique of ski movements in skating style.
wireless strain gauges, canoe paddle, ski poles, roller skis, repulsion dynamics
1. Shehadeh M. A., et al. Hybrid teams of industry 4.0: A workplace considering robots as key players // Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2017, pp. 1208–1213. DOI: https://doi.org/10.1109/SMC.2017.8122777
2. Rauter S. Mass sports events as a way of life (differences between the participants in a cycling and a running event). Kinesiologia Slovenica, 2014, 20 (1), pp. 5–15.
3. Polo-Rodriguez A., et al. Classifying sport-related human activity from thermal vision sensors using CNN and LSTM. International Conference on Image Analysis and Processing, Cham: Springer International Publishing, 2022, pp. 38–48. DOI: https://doi.org/10.1007/978-3-031-13321-3_4
4. Polo-Rodriguez A., et al. Detection of sets and repetitions in strength exercises using IMU-based wristband wearables. International Conference on Ubiquitous Computing and Ambient Intelligence, Cham: Springer Nature Switzerland, 2023, pp. 71–80. DOI: https://doi.org/10.1007/978-3-031-48306-6_7
5. Monroy E. B., et al. Fuzzy monitoring of in-bed postural changes for the prevention of pressure ulcers using inertial sensors attached to clothing. Journal of Biomedical Informatics, 2020, 107, Article 103476. DOI: https://doi.org/10.1016/j.jbi.2020.103476
6. Ruiz-García I., et al. Development and evaluation of a low-drift inertial sensor-based system for analysis of alpine skiing performance. Sensors, 2021, 21 (7), Article 2480. DOI: https://doi.org/10.3390/s21072480
7. Kamišalić A., et al. Sensors and functionalities of non-invasive wrist-wearable devices: A review. Sensors, 2018, 18 (6), Article 1714. DOI: https://doi.org/10.3390/s18061714
8. Fister Jr I., et al. Computational intelligence in sports: challenges and opportunities within a new research domain. Applied Mathematics and Computation, 2015, 262, pp. 178–186. DOI: https://doi.org/10.1016/j.amc.2015.04.004
9. Romagnoli C., et al. Monitoring of kinetic parameters in sprint canoeing performance. International Workshop on Engineering Methodologies for Medicine and Sport, Cham: Springer Nature Switzerland, 2024, pp. 710–724. DOI: https://doi.org/10.1007/978-3-031-63755-1_52
10. Lundström P., Borgen J. S., McKenzie D. The canoe/kayak athlete. Handbook of Sports Medicine and Science: Canoeing, 2019, pp. 40-46.
11. Cruz M. I., et al. Advancements in performance monitoring: A systematic review of sensor technologies in rowing and canoeing biomechanics. Sports, 2024, 12 (9), pp. 254–269. DOI: https://doi.org/10.3390/sports12090254
12. Foster C., Rodriguez-Marroyo J. A., De Koning J. J. Monitoring training loads: the past, the present, and the future. International Journal of Sports Physiology and Performance, 2017, 12 (2), pp. 2–8. DOI: https://doi.org/10.1123/ijspp.2016-0388
13. Guseinov D. I., et al. Technologies for measuring the dynamic parameters of rowing based on strain gauge systems. Russian Journal of Biomechanics, 2024, 28 (2), pp. 95–104. DOI: https://doi.org/10.15593/RJBiomech/2024.2.10
14. Álvarez-Yates T., et al. Explanatory model for elite canoeists’ performance using a functional electromechanical dynamometer based on detected lateral asymmetry. Symmetry, 2024, 16 (3), Article 347. DOI : https://doi.org/10.3390/sym16030347
15. Bonaiuto V., et al. A new measurement system for performance analysis in flatwater sprint kayaking. Proceedings, 2020, 49 (1), pp. 39–45. DOI: https://doi.org/10.3390/proceedings2020049039
16. Annino G., et al. A DAQ system suited for Olympic sprint canoeing performances monitoring. 2023 IEEE International Workshop on Sport, Technology and Research (STAR), Cavalese - Trento, Italy, 2023, pp. 81–84. DOI: https://doi.org/10.1109/STAR58331.2023.10302443
17. Lukashevich D. A., et al. Smart sensors for estimation of power interaction of an athlete with water surface when paddling in the cycle of rowing locomotions. Journal of Complexity in Health Sciences, 2020, 3 (1), pp. 81–90. DOI: https://doi.org/10.21595/chs.2020.21314
18. Guseinov D. I., Lukashevich D. A., Permyakov T. V. Intelligent sensor systems in monitoring technical and speed-strength preparedness of rowing athletes [Electronic resource]: Practical guide. Minsk: Belarusian State University of Physical Culture, 2024, 48 p (in Russian). EDN: https://www.elibrary.ru/eucvsc
19. Stöggl T., Holmberg H. C. A systematic review of the effects of strength and power training on performance in cross-country skiers. Journal of Sports Science & Medicine, 2022, 21 (4), Article 555. DOI: https://doi.org/10.52082/jssm.2022.555
20. Gløersen Ø., et al. Technique analysis in elite athletes using principal component analysis. Journal of Sports Sciences, 2018, 36 (2), pp. 229–237. DOI: https://doi.org/10.1080/02640414.2017.1298826
21. Wernbom M., Augustsson J., Thomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Medicine, 2007, 37, pp. 225–264. DOI: https://doi.org/10.2165/00007256-200737030-00004
22. Sandbakk Ø., Holmberg H. C. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. International Journal of Sports Physiology and Performance, 2017, 12 (8), pp. 1003–1011. DOI: https://doi.org/10.1123/ijspp.2016-0749
23. Hébert-Losier K., et al. Factors that influence the performance of elite sprint cross-country skiers. Sports Medicine, 2017, 47, pp. 319–342. DOI: https://doi.org/10.1007/s40279-016-0573-2
24. Pellegrini B., Stöggl T. L., Holmberg H. C. Developments in the biomechanics and equipment of Olympic cross-country skiers. Frontiers in Physiology, 2018, 9 (976), pp. 1e–7e. DOI: https://doi.org/10.3389/fphys.2018.00976
25. Gardagina L. G. Techniques of skiing: Methodological guidelines. Moscow: MIIT, 2013, 89 p (in Russian).
26. Savya Sachi G. Predicting cross-country skiing techniques using machine learning: Master’s thesis. Gothenburg, Sweden: Department of Computer Science and Engineering, Chalmers University of Technology; University of Gothenburg, 2021, 70 p.
27. Pousibet-Garrido A., Polo-Rodríguez A., Moreno-Pérez J. A., Ruiz-García I., Escobedo P., López-Ruiz N., Marcen-Cinca N., Medina-Quero J., Carvajal M. Á. Gear classification in skating cross-country skiing using inertial sensors and deep learning. Sensors, 2024, 24, Article 6422. DOI: https://doi.org/10.3390/s24196422
28. Li X., Song L., Wu H. Digitalization of cross-country skiing training based on multisensor combination. Journal of Sensors, 2021, 2021 (1), pp. 1–11. DOI: https://doi.org/10.1155/2021/5662716
29. Stöggl R., Müller E., Stöggl T. Technique and maximal skiing speed for youth cross-country skiing performance. Frontiers in Sports and Active Living, 2023, 5, Article 1133777. DOI: https://doi.org/10.3389/fspor.2023.1133777
30. Yuchen Ch. Comparative analysis of movements of athletes using a special simulator and roller skis with skating technique. Scientific Notes of the Belarusian State University of Physical Culture, 2021, 24, pp. 177–187 (in Russian). EDN: https://www.elibrary.ru/wrncas